A Ternary Fuzzy Extractor For Efficient Cryptographic Key Generation
- Barker, E., & Kelsey, J. (2012). Recommendation for random number generation using deterministic random bit generators. NIST special publication 800-90A. http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf.
- Berlekamp, E. (1965). On decoding binary Bose-Chadhuri-Hocquenghem codes. IEEE Transactions on Information Theory, 11(4), 577–579.MathSciNetCrossRefzbMATHGoogle Scholar
- Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varici, K., & Verbauwhede, I. (2011). SPONGENT: a lightweight hash function. In Lecture notes in computer science (LNCS): Vol.6917. Workshop on cryptographic hardware and embedded systems—CHES 2011 (pp. 312–325). Berlin: Springer.CrossRefGoogle Scholar
- Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., & Tuyls, P. (2008). Efficient helper data key extractor on FPGAs. In Lecture notes in computer science (LNCS): Vol.5154. Workshop on cryptographic hardware and embedded systems—CHES 2008 (pp. 181–197). Berlin: Springer.CrossRefGoogle Scholar
- Burton, H. (1971). Inversionless decoding of binary BCH codes. IEEE Transactions on Information Theory, 17(4), 464–466.CrossRefzbMATHGoogle Scholar
- Carter, J. L., & Wegman, M. N. (1977). Universal classes of hash functions. In ACM symposium on theory of computing—STOC 1977 (pp. 106–112). New York: ACM.Google Scholar
- Chien, R. (1964). Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes. IEEE Transactions on Information Theory, 10(4), 357–363.MathSciNetCrossRefzbMATHGoogle Scholar
- Dodis, Y., Reyzin, L., & Smith, A. (2004). Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In Lecture notes in computer science (LNCS): Vol.3027. Advances in cryptology—EUROCRYPT 2004 (pp. 523–540). Berlin: Springer.CrossRefGoogle Scholar
- Dodis, Y., Ostrovsky, R., Reyzin, L., & Smith, A. (2008). Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38(1), 97–139.MathSciNetCrossRefzbMATHGoogle Scholar
- Eastlake, D., Schiller, J., & Crocker, S. (2005). Randomness requirements for security. IETF RFC 4086. http://www.ietf.org/rfc/rfc4086.txt.
- Ferguson, N., & Schneier, B. (2003). Practical cryptography. New York: Wiley.Google Scholar
- Gallager, R. G. (1962). Low density parity-check codes. IRE Transactions on Information Theory, 8, 21–28.MathSciNetCrossRefzbMATHGoogle Scholar
- Guajardo, J., Kumar, S. S., Schrijen, G. J., & Tuyls, P. (2007). FPGA intrinsic PUFs and their use for IP protection. In Lecture notes in computer science (LNCS): Vol.4727. Workshop on cryptographic hardware and embedded systems—CHES 2007 (pp. 63–80). Berlin: Springer.CrossRefGoogle Scholar
- Gutmann, P. (2004). Cryptographic security architecture. Berlin: Springer.zbMATHGoogle Scholar
- Kelsey, J., Schneier, B., & Ferguson, N. (1999). Yarrow-160: notes on the design and analysis of the Yarrow cryptographic pseudorandom number generator. In Lecture notes in computer science (LNCS): Vol.1758. International workshop on selected areas in cryptography—SAC 1999 (pp. 13–33). Berlin: Springer.CrossRefGoogle Scholar
- Lenstra, A. K., Hughes, J. P., Augier, M., Bos, J. W., Kleinjung, T., & Wachter, C. (2012). Ron was wrong, Whit is right. Cryptology ePrint Archive, Report 2012/064.Google Scholar
- Linnartz, J.-P., & Tuyls, P. (2003). New shielding functions to enhance privacy and prevent misuse of biometric templates. In Lecture notes in computer science (LNCS): Vol.2688. International conference on audio- and video-based biometric person authentication—AVBPA 2003 (pp. 393–402). Berlin: Springer.CrossRefGoogle Scholar
- Maes, R., Tuyls, P., & Verbauwhede, I. (2009). Low-overhead implementation of a soft decision helper data algorithm for SRAM PUFs. In Lecture notes in computer science (LNCS): Vol.5747. Workshop on cryptographic hardware and embedded systems—CHES 2009 (pp. 332–347). Berlin: Springer.Google Scholar
- Maes, R., Tuyls, P., & Verbauwhede, I. (2009). Soft decision helper data algorithm for SRAM PUFs. In IEEE international symposium on information theory—ISIT 2009 (pp. 2101–2105). New York: IEEE.CrossRefGoogle Scholar
- Maes, R., Van Herrewege, A., & Verbauwhede, I. (2012). PUFKY: a fully functional PUF-based cryptographic key generator. In Lecture notes in computer science (LNCS): Vol.7428. Workshop on cryptographic hardware and embedded systems—CHES 2012. Berlin: Springer.Google Scholar
- Maiti, A., Casarona, J., McHale, L., & Schaumont, P. (2010). A large scale characterization of RO-PUF. In IEEE international symposium on hardware-oriented security and trust—HOST 2010 (pp. 94–99). New York: IEEE.CrossRefGoogle Scholar
- Massey, J. (1969). Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory, 15(1), 122–127.MathSciNetCrossRefzbMATHGoogle Scholar
- Nisan, N., & Zuckerman, D. (1996). Randomness is linear in space. Journal of Computer and System Sciences, 52(1), 43–52.MathSciNetCrossRefzbMATHGoogle Scholar
- Schnabl, G., & Bossert, M. (1995). Soft-decision decoding of Reed-Muller codes as generalized multiple concatenated codes. IEEE Transactions on Information Theory, 41(1), 304–308.CrossRefzbMATHGoogle Scholar
- Silverman, R., & Balser, M. (1954). Coding for constant-data-rate systems-part I. A new error-correcting code. Proceedings of the IRE, 42(9), 1428–1435.CrossRefGoogle Scholar
- Tarnovsky, C. (2010). Deconstructing a ‘Secure’ processor. Talk at Black Hat Federal 2010. http://www.blackhat.com/presentations/bh-dc-10/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DASP-slides.pdf.
- Torrance, R., & James, D. (2009). The state-of-the-art in IC reverse engineering. In Lecture notes in computer science (LNCS): Vol.5747. Workshop on cryptographic hardware and embedded systems—CHES 2009 (pp. 363–381). Berlin: Springer.CrossRefGoogle Scholar
- Tuyls, P., & Batina, L. (2006). RFID-tags for anti-counterfeiting. In Lecture notes in computer science (LNCS): Vol.3860. Topics in cryptology: cryptographers’ track of the RSA conference—CT-RSA 2006 (pp. 115–131). Berlin: Springer.CrossRefGoogle Scholar
- Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2), 260–269.CrossRefzbMATHGoogle Scholar
- Yu, M.-D. M., M’Raihi, D., Sowell, R., & Devadas, S. (2011). Lightweight and secure PUF key storage using limits of machine learning. In Lecture notes in computer science (LNCS): Vol.6917. Workshop on cryptographic hardware and embedded systems—CHES 2011 (pp. 358–373). Berlin: Springer.CrossRefGoogle Scholar
A Ternary Fuzzy Extractor For Efficient Cryptographic Key Generation 10
A Ternary Fuzzy Extractor For Efficient Cryptographic Key Generation Download
Fuzzy extractor structure using serially concatenated BCH-Polar codes is proposed to generate reproducible keys from a ReRAM-based ternary-state Physical Unclonable Functions (PUFs) for device authentication and secret key generation. The main concern in deploying PUF-based key generation methods is the leakage of information about. Fuzzy extractors are a method that allows biometric data to be used as inputs to standard cryptographic techniques for security. 'Fuzzy', in this context, refers to the fact that the fixed values required for cryptography will be extracted from values close to but not identical to the original key, without compromising the security required. Starcraft 2 game key generator. One application is to encrypt and authenticate users records. Abstract—The procedure for extracting a cryptographic key from noisy sources, such as biometrics and Physically Un- cloneable Functions (PUFs), is known as Fuzzy Extractor (FE). Although FE constructions deal with discrete sources, most noisy sources are continuous.